Regulation of the Bacillus subtilis ccpC gene by CcpA and CcpC
نویسندگان
چکیده
منابع مشابه
CcpA-dependent regulation of Bacillus subtilis glutamate dehydrogenase gene expression.
The Bacillus subtilis rocG gene, encoding catabolic glutamate dehydrogenase, was found to be subject to direct CcpA-dependent glucose repression. The effect of CcpA required the presence of both the HPr and Crh proteins. The primary CcpA binding site was identified by mutational analysis and DNase I footprinting. In the absence of inducers of the Roc pathway, rocG was still expressed at a low l...
متن کاملCcpC-dependent regulation of citB and lmo0847 in Listeria monocytogenes.
In Bacillus subtilis, the catabolite control protein C (CcpC) plays a critical role in regulating the genes encoding the enzymes of the tricarboxylic acid branch of the Krebs citric acid cycle. A gene encoding a potential CcpC homolog and two potential target genes were identified in the Listeria monocytogenes genome. In vitro gel mobility shift assays and DNase I footprinting experiments showe...
متن کاملCatabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA.
The Bacillus subtilis acsA (acetyl coenzyme A synthetase) and acuABC (acetoin utilization) genes were previously identified in the region downstream from the ccpA gene, which encodes a protein required for catabolite repression of the amyE (alpha-amylase) gene. The acsA and acuABC genes are divergently transcribed, with only 20 bp separating the -35 sequences of their promoters. Expression of t...
متن کاملComplex regulation of the Bacillus subtilis aconitase gene.
The roles of the CcpC, CodY, and AbrB proteins in regulation of the Bacillus subtilis aconitase (citB) gene were found to be distinct and to vary with the conditions and phase of growth. CcpC, a citrate-inhibited repressor that is the primary factor regulating citB expression in minimal-glucose-glutamine medium, also contributed to repression of citB during exponential-phase growth in broth med...
متن کاملThe Bacillus subtilis response regulator gene degU is positively regulated by CcpA and by catabolite-repressed synthesis of ClpC.
In Bacillus subtilis, the response regulator DegU and its cognate kinase, DegS, constitute a two-component system that regulates many cellular processes, including exoprotease production and genetic competence. Phosphorylated DegU (DegU-P) activates its own promoter and is degraded by the ClpCP protease. We observed induction of degU by glucose in sporulation medium. This was abolished in two m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Microbiology
سال: 2002
ISSN: 0950-382X,1365-2958
DOI: 10.1046/j.1365-2958.2002.02751.x